文章编号: 0258-7025(2008)05-0643-04

抽运光分布对 Nd: YAG 微片激光器热效应的影响

史 彭 李金平 李 隆 甘安生

(西安建筑科技大学理学院,陕西西安 710055)

摘要 以半解析热分析理论为基础,研究超高斯分布激光二极管(LD)端面抽运背冷式微片 Nd:YAG 晶体的热效 应。通过对超高斯分布激光二极管端面抽运背冷式微片 Nd:YAG 晶体工作特点分析建立热模型,利用热传导方程 新的求解方法得出微片 Nd:YAG 晶体内部温度场、热形变场、附加光程差(OPD)半解析计算表达式;利用附加光 程差得出微片 Nd:YAG 晶体的热焦距计算表达式。研究结果表明,当使用总功率为24.2 kW,10%占空比4 阶超高 斯分布激光二极管抽运时,微片上获得70.36 ℃最高温升,0.465 μm最大热形变,0.836 μm最大附加光程差。 关键词 激光技术;微片激光器;Nd:YAG 晶体;热分析;超高斯分布;背冷

中图分类号 TN 248.1 文献标识码 A

Influence of Pump Light Distribution on Thermal Effects within Nd: YAG Microchip Laser

Shi Peng Li Jinping Li Long Gan Ansheng

(College of Science, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China)

Abstract Based on the theory of semi-analytical thermal analysis, the thermal effects of the diode-end-pumped Nd: YAG microchip crystal with back surface cooling were investigated. A thermal model that matches actual working state of the laser crystal is established by analyzing the working characteristics of the Nd: YAG microchip crystal. Through using a new method to solve the heat conduction equation of isotropic material, a general expression of temperature field, thermal distortion field and additional optical path differences (OPD) within Nd: YAG microchip crystal was obtained respectively. Calculation expression of thermal focal length of the Nd: YAG microchip crystal was obtained by analyzing the additional OPD caused by heat. Research results show that a maximum temperature rise is 70. 36 °C, a maximum thermal distortion is 0. 465 μ m and a maximum additional OPD is 0. 836 μ m when the LD pump light is fourth rank of super-Gaussian distribution, the total power is 24. 2 kW, and the duty cycle is 10%. **Key words** laser technique; microchip laser; Nd: YAG crystal; thermal analysis; super-Gaussian distribution; back surface cooling

1 引 言

激光二极管(LD)抽运的全固态激光器 (DPSSL)的一个发展方向是小型化、集成化,形成 一种新的激光器——微片激光器^[1,2]。微片激光器 具有体积小、结构紧凑、稳定、寿命长、全固态化、较 高转换效率、易廉价批量生产等优点。微片激光器 腔长较短,容易实现光束质量好、光强亮度大的单纵 模单频激光输出。在激光雷达、激光测距、激光传 感、激光医疗及光存储、非线性光学等领域有着重要 的应用价值^[3]。 微片激光器的激光晶体较薄,为了增大晶体对 抽运光的吸收,一般选用高掺杂晶体,并采用在晶体 一端镀反射膜的方法使抽运光获得二次吸收。虽然 微片激光器的热效应比一般的全固态激光器小,但 是,随着抽运光功率增加,微片激光器的热效应明 显^[4]。微片激光晶体吸收部分抽运光能量转变为晶 体热能,在晶体内部形成相对稳定的温度梯度场分 布,产生热应力分布,在抽运端面发生热形变,产生 热致双折射^[5],影响微片激光器的输出光束分布质 量、输出功率。

抽运微片激光晶体的抽运光分布不同,产生的

收稿日期:2007-10-24; 收到修改稿日期:2007-11-13

基金项目:陕西省教育厅专项科研基金(06JK251)资助课题。

作者简介:史 彭(1956—),男,辽宁人,教授,主要从事高功率激光器热分析方面的研究。E-mail:pshi56@163.com

热效应也不同。本文研究典型背冷式微片激光器在 高功率超高斯分布激光二极管(LD)抽运光端面抽 运下,圆形 Nd:YAG 微片晶体产生的热效应。

2 微片 Nd: YAG 晶体温度场

2.1 背冷式圆形微片 Nd: YAG 晶体热模式

背部冷却方式是微片激光器常用冷却方式,背 冷式圆形微片 Nd: YAG 激光器模型如图1所示^[6]。 微片晶体下表面镀有对808 nm和1064 nm波长光的 全反(HR)膜,再与制冷器良好接触。晶体上端面 镀有对808 nm和1064 nm波长光的增透(AR)膜。 圆形半径为 R,厚度为 d。建立柱坐标系,坐标原点 O 在晶体中心左表面处。波长为808 nm抽运光从晶 体上端面中心向下抽运,经下表面808 nm高反膜反 射,反方向向上传播。

图1 微片 Nd: YAG 激光器示意图 Fig. 1 Schematic diagram of the Nd: YAG microchip laser

2.2 圆形微片 Nd: YAG 晶体温度场半解析公式

高斯基模抽运光填充因子小,提取效率不高,超 高斯分布抽运光兼顾光束质量和提取效率^[7]。激光 二极管抽运光一般假设为高斯分布或所谓"大礼帽" 等分布,这些分布可以归结为不同阶次的超高斯分 布^[8]。具有超高斯分布函数抽运光平行 *z* 轴入射到 *z* = 0 面,入射光的分布表达式为^[7]

$$I_{i}(r,L) = I_{0} e^{-2\frac{r^{2\kappa}}{w^{2k}}}, \qquad (1)$$

式中 I_i 为抽运光强度, r 为柱坐标系中径向坐标, I_o 为抽运光中心的强度。, w 为抽运光束的高斯半径, k 为超高斯分布阶次。当 k = 1 时为高斯分布, 当 $k = \infty$ 时为均匀分布, 当 k 较大时(如 k = 5)为所谓"大 礼帽"分布。抽运光在微片晶体内部产生的温度场 为

$$T(r,z) = \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} A_{nm} \sin\left[\frac{(2m+1)\pi}{2d}z\right] \times J_0\left[\frac{x_n^{(1)}}{R}r\right],$$
(2)

式中常数 Amm 为

$$A_{nm} =$$

$$\frac{16I_{0}\beta\eta d}{\lambda\left\{(2m+1)^{2}\pi^{2}R^{2}+4d^{2}\left[x_{n}^{(1)}\right]^{2}\right\}J_{0}^{2}\left[x_{n}^{(1)}\right]}\times$$
$$\int_{0}^{R}\int_{0}^{d}e^{-\frac{r^{2}}{w^{2}}}\left[e^{-\beta(d-z)}+\zeta_{R}e^{-\beta(d+z)}\right]\times$$
$$\sin\frac{(2m+1)\pi}{2d}zJ_{0}\left[\frac{x_{n}^{(1)}}{R}r\right]dzrdr,$$
(3)

式中 β 为 YAG 晶体对抽运光的吸收系数, η 为由荧 光量子效应和内损耗所决定的热转换系数, $\eta = 1 - \lambda_p/\lambda_L$, λ_p 为激光二极管抽运光波长808 nm, λ_L 为谐 振腔的振荡激光波长1064 nm, λ 为 YAG 晶体的导 热系数或热导率, $x_n^{(1)}$ 为1 阶贝塞耳函数第n 个零 点,J₀ 为 0 阶贝塞耳函数。 ζ_R 为808 nm高反膜的反 射率。

2.3 圆形微片 Nd: YAG 晶体温度场计算实例

阶次为4,半径 14 mm 的超高斯抽运光抽运微 片 Nd:YAG 晶体,它的总功率为24.2 W,占空比为 10%,微片尺寸为 ϕ 40 mm×1.3 mm,掺 Nd³⁺离子 原子数分数为3.0%的 Nd:YAG 晶体对于808 nm 抽运光的吸收系数为20.9 cm^{-1[9]},导热系数为 0.13 W/(cm•K),下表面808 nm高反膜的反射率 为99%。计算得出微片晶体温度分布如图 2 所示, 等温线分布如图 3 所示。计算得出:1)在抽运光束 一半范围内 (r < w/2)等温线大致平行晶面,抽运 面中心最高温升为70.36 C。2)在抽运光束范围外 (r > w)基本上没有温升。3)过渡区(w/2 < r < w) 等温线大致垂直晶面,并从垂直晶面向平行晶面过 渡,会产生较强的热内应力。

图 2 微片 Nd: YAG 晶体的内部温度场 Fig. 2 Temperature distribution diagram of the Nd: YAG microchip crystal

仅改变公式中阶次 k 的大小,可以定量分析不同阶次超高斯抽运光产生的温度场,在抽运面(z = d)上温度对比如图 4 所示。计算得出,阶次越小,抽运面中心最高温升越高(阶次分别为 1,2,3,4 时,

图3 微片 Nd: YAG 晶体的内部等温线 Fig. 3 Isotherm diagram of the Nd: YAG microchip crystal

图4 抽运面上不同阶次温度对比图

Fig. 4 Temperature comparison diagram on pump face (z = d) with different rank super-Gaussian distributions 抽运面中心最高温升分别为106.07 °C,86.52 °C,74.82 °C,70.36 °C);高温区越窄,低温区越宽。

仅改变公式中的 d 大小,可以计算分析晶体厚 度对晶体内部温度场的影响。计算得出增加晶体厚 度,最高温升略微下降。仅改变公式中的 R 大小,可 以计算分析晶体半径对晶体内部温度场的影响。计 算得出增大半径,最高温升略有上升。还可以仅改变 公式中 w 的大小,计算分析光斑大小对温度场影响 等。

文献[10]的作者对背冷微片 Nd:YAG 晶体温 度场进行了研究。它的条件和图 2 相同,阶次为 4 时 抽运端面最高温升为71.55 ℃,与70.36 ℃比较,偏 差在合理范围内,证明得出的温度场计算公式的正 确性。

3 微片 Nd: YAG 晶体端面形变

微片内部任意点 (r, z) 原温度为 0,达到热平 衡后的温度为 T(r, z),则该点的温度增加量为 T(r, z)。温升引起该点热应变,该点 z 方向 dz 元热 膨胀量为 $dl_z = \alpha T(r, z) dz$,其中 α 为 Nd: YAG 晶 体沿 z 方向的热膨胀系数。该点则 z 方向总热膨胀 量为^[11]

$$l_{z}(r) = \int dl_{z} = \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} B_{mn} J_{0} \left[\frac{x_{n}^{(1)}}{R} r \right], \quad (4)$$

式中 B_{nm} 为

$$B_{nm} = \frac{32\alpha I_{0}\beta \eta d^{2}/(2m+1)\pi}{\lambda \{(2m+1)^{2}\pi^{2}R^{2}+4d^{2}[x_{n}^{(1)}]^{2}\}J_{0}^{2}[x_{n}^{(1)}]} \times \int_{0}^{R} \int_{0}^{d} e^{-2\frac{2k}{w^{2k}}} [e^{-\beta(d-z)} + \zeta_{R}e^{-\beta(d+z)}] \times \sin\frac{(2m+1)\pi}{2d} z J_{0}[\frac{x_{n}^{(1)}}{R}r] dzr dr_{o}$$
(5)

由于 Nd: YAG 晶体下面与冷却器接触,晶体上 部温度高,所以热膨胀主要在晶体上边抽运面上。 利用(4)式可以计算抽运面上的热形变。在图 2 条 件下,计算得出抽运面上热形变分布如图 5 所示,抽 运光中心最大热形变量为0.465 μm,说明微片 Nd: YAG 晶体热形变量较小。由图 5 可以得出,抽运面 上热形变仅分布在抽运光中心附近。计算不同阶次 情况得出,阶次越小,最大热形变量越高。

4 附加光程差及热焦距

引起微片 Nd: YAG 晶体热透镜效应的主要原 因有^[5,12]:1)由热膨胀导致激光晶体长度变化;2) 由温度变化引起激光晶体折射率变化;3)由温度变 化引起激光晶体双折射效应。这三种原因都会引起 晶体附加光程差(OPD)。利用轴向附加光程差可 以计算出热透镜焦距。对此进行研究^[13],得出这三 个因素在 Nd: YAG 晶体内部任意点 (r,z)轴向(z方向)dz 元内产生的附加光程差分别为 dOPD₁ = 6.64 × 10⁻⁶ T(r,z)dz,dOPD₂ = 7.30 × 10⁻⁶ T(r, z)dz 和 dOPD₃ = 0.82 × 10⁻⁶ T(r,z)dz.dz 元内产 生的轴向附加光程差为这三项之和。微片 Nd: YAG 晶体轴向总附加光程差为 利用(2)式和(6)式可以计算微片 Nd: YAG 晶体轴 向附加光程差分布。在图 2条件下,计算得出附加光 程差分布如图 6所示,抽运光中心附加光程差量为 0.836 μm,说明总附加光程差不是很大。由图 6 可 以得出阶次为 4 的超高斯光产生的附加光程差仅在 w 范围之内。计算得出不同阶次超高斯光产生的附 加光程差分布和其形变分布相似。

图 6 微片 Nd:YAG 晶体附加光程差分布 Fig. 6 Additional OPD distribution diagram of the Nd:YAG microchip crystal

在抽运区域,热透镜焦距可以近似地用球面透 镜焦距计算公式来拟合^[5,12]

$$f = \frac{r_{\rm e}^2}{2[{\rm OPD}_0 - {\rm OPD}(r_{\rm e})]},$$
 (7)

式中 r。为抽运光有效半径,由于阶次为4的超高斯 光产生的附加光程差范围为 w,则 r。取 w。OPD。为 轴心处的光程差,OPD(r。)为抽运光有效半径处的 光程差。在图2条件下,计算得出微片 Nd:YAG 晶 体热焦距随抽运功率的变化如图7所示。从图7得 出抽运光功率增加时,所产生的热焦距变短,对激光 束质量有明显的影响。

5 结 论

在分析具有高斯分布激光二极管端面抽运背冷 式微片 Nd: YAG 晶体工作特点的基础上,建立了符 合实际情况的热模型。考虑微片 Nd: YAG 晶体左 表面镀膜使抽运光反射的特点,利用泊松方程一种 新求解方法,得出了微片 Nd: YAG 晶体内部温度 场、热形变场、附加光程差解析计算方法。利用附加 光程差分析方法,得出 Nd: YAG 圆棒热焦距计算方 法。与参考文献所给结果进行比较,验证得出了理论 结果的正确性。

参考文献

- 1 Yufeng Li, Youlun Ju, Y. Urata *et al.*. Experimental spectra study of Tm:GdVO₄ microchip laser at room temperature [J]. *Chin. Opt. Lett.*, 2007, 5(6):351~352
- 2 Rao Haibo, Liao Yun, Cheng Jianbo et al.. Laser diodepumped passively Q-switched monolithic microchip laser based on liquid phase epitaxy [J]. Acta Optica Sinica, 2007, 27(1): 90~93

饶海波,廖 云,成建波等.外延单片式激光二极管抽运被动 调Q微激光器[J].光学学报,2007,27(1):90~93

- Wang Shuxiang, Chen Yunlin, Yan Caifan *et al.*. Survey of microchip lasers [J]. *Chinese J. Quantum Electronics*, 2007, 24(4):401~406
 王淑香,陈云琳,颜彩繁等. 微片激光器的最新研究进展[J].
- 量子电子学报, 2007, **24**(4):401~406 4 Yao Zhenyu, Jiang Jianfeng, Tu Bo *et al.*, 1.5 kW laser diodepumped Nd: YAG disk laser [J]. *Chinese J. Lasers*, 2007, **34**

(1):37~40
 姚震宇,蒋建锋,涂 波等.1.5 kW 激光二极管抽运 Nd:YAG
 薄片激光器[J].中国激光,2007,34(1):37~40

- 5 Wenjie Xie, Siu-Chung Tam, Yee-Loy Lam *et al.*. Analysis of a dynamical procedure on diode-end-pumped solid-state lasers [J]. *IEEE J. Quantum Electron.*, 2001, **37**(10):1368~1372
- 6 G. Lescroart, R. Muller, G. Bourdet. Experimental investigations and theoretical modeling of a Tm: YVO₄, microchip laser [J]. Opt. Commun., 1997, 143:147~155
- 7 Wang Ning, Lu Yutian, Kong Yong. Analysing the light intensity distribution of super-Gaussian mirror resonator by fast Fourier-transform [J]. Chinese J. Lasers, 2004, 31(11):1317 ~1322

王 宁,陆雨田,孔 勇. 用快速傅里叶变化法分析超高斯反射 镜腔的光场分布[J]. 中国激光, 2004, **31**(11):1317~1322

- 8 Wenjie Xie, Young Kwon, Wentao Hu et al.. Thermal modeling of solid state lasers with super-Gaussian pumping profiles [J]. Society of Photo-Optical Instrumentation Engineers, 2003, 42(6):1787~1794
- 9 J. Dong, P. Deng, F. Gan et al.. Highly doped Nd: YAG crystal used for microchip lasers [J]. Opt. Commun., 2001, 197:413~418
- 10 Pei Zhengping, Tang Chun, Tu Bo et al.. Simulation of thermal effect on beam distortion in Nd: YAG thin disk laser [J]. High Power Laser and Particle Beams, 2006, 18(10):1615~1618 裹正平,唐 淳,涂 波等. Nd: YAG 薄片激光器热致波前畸 变[J]. 强激光与粒子束, 2006, 18(10):1615~1618
- 11 Peng Shi, Wen Chen, Long Li *et al.*. Semianalytical thermal analysis on a Nd: YVO₄ crystal [J]. *Appl. Opt.*, 2007, 46 (19):4046~4061
- 12 Zhang Xingyu, Zhao Shengzhi, Wang Qingpu et al.. Study on thermal lens of Nd³⁺:YAG laser pumped by a laser diode [J]. Chinese J. Lasers, 2000, A27(9):777~781 张行愚,赵圣之,王青圃等.激光二极管抽运的激光器热透镜 效应研究[J]. 中国激光, 2000, A27(9):777~781
- 13 Peng Shi, Wen Chen, Long Li *et al.*. Semianalytical thermal analysis of thermal focal length on Nd: YAG rods [J]. *Appl. Opt.*, 2007, 46(26):6655~6661